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Abstract

An attempt is made to extend Kepler’s classic model of the solar system to account for Uranus and Neptune.
Possible additions to the five Platonic solids are examined, with the choice finally being made to use a d10
(pentagonal trapezohedron) and a Utah Teapot. The relative orbit sizes thus produced are compared to modern
figures and Kepler’s original results.

I. Introduction

Mysterium Cosmographicum was published by
Johannes Kepler in 1596. In it, the relative spac-
ing of the orbits of the six planets then known
(Mercury, Venus, Earth, Mars, Jupiter, Saturn)
were explained in terms of a nested series of
Platonic solids (octohedron, icosahedron, do-
decahedron, tetrahedron, cube).[Kepler, 1596]
While the fit was far from perfect, Kepler never
entirely dropped the concept.[Kepler, 1618]

Not actually being nessecary to a scien-
tific understanding of the solar system, Ke-
pler’s Mysterium Cosmographicum model did
not prove nearly as influential as his laws of
planetary motion. Outside of the scientific
world, however, his imagery and mysticism
did have a lasting impact.

In order to explore this strange, beautiful,
flawed model, the author set about extending
it to account for Uranus and Neptune. It was
hoped that this effort would help modern read-
ers appreciate some of the significant differ-
ences in the scientific mindset of Kepler’s age.

II. Methods

There are two components to the Keplerian
model: the spherical shells representing the
orbits of the planets, and the Platonic solids

between them which provide the spacing. The
spherical shells have a thickness based on the
eccentricity of that planet’s orbit. Thus, Mer-
cury and Mars each have a relatively thick shell,
while those for Venus and Earth are much thin-
ner.

i. Selection of solids

One major reason Kepler was a proponent
of the Mysterium Cosmographicum model was
the apparent numerological significance of six
planets with five Platonic solids to provide
spacing between them. This poses a particular
challenge when trying to extend the model to
another two planets, as a total of seven Platonic
solids would be needed.

One option would be to explore higher
dimensional spaces. In four dimensions,
for instance, there are six regular poly-
topes. However, in all dimensions higher
than four there are only three regular
polytopes.[Coxeter, 1973] Thus, even if one
were to find the use of higher dimensional
objects in this context acceptable, it isn’t clear
which two should be chosen. This option was
rejected as being contrary to the numerological
biases of the original model.

Without real Platonic solids available, the au-
thor was forced to approach the problem more
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Figure 1: The Six Platonic Solids, James Arvo and David
Kirk, 1987 [Avro, 1987]

abstractly. Luckily, two options immediately
presented themselves.

Utah teapot

The Utah teapot is a classic computer graphics
object dating back to 1975. It has been included
as a pre-defined primitive in basically every
graphics package ever since. Having a simple
object with relatively complicated geometry
has proved to be very valuable, and the Utah
teapot has become the default for that role.
Because of its ubiquitous inclusion amongst
other basic solids, it has often been referred to
as the “sixth Platonic solid”.1 The author felt
this amply justified its use here.

d10

To the best of the author’s knowledge, the
only context in real life where all the Platonic
solids are commonly seen is in a set of gaming
dice. These normally include a tetrahedron
(d4), cube (d6), octahedron (d8), dodecahedron
(d12), and icosahedron (d20). They also include
a pentagonal trapezohedron (d10).2 While a
d10 is not technically a Platonic solid, being
part of a group otherwise made up of Platonic
solids makes it good candidate for the seventh.

Figure 2: A set of gaming dice

ii. Modeling

The 3D modelling was all performed in
Blender, a GPLv2 licensed free software pack-
age. Sizing of the elements was performed
manually, using the renderer itself to check for
collisions between the objects.

The model was built starting with the shell
of Jupiter being set to an arbitrary diameter of
10 units. Its thickness was set based on modern
number for Jupiter’s perihelion (4.95029 AU)
and aphelion (5.45492 AU)[Simon, 1994], for a
percentage of 9.241%. From this base, the next
solid outward (cube) and inward (tetrahedron)
were placed, and scaled to just touch the shell
of Jupiter. The shells for Saturn and Mars were
added and their thickness set, again using the
modern perihelial and aphelial measurements.
This was repeated for the entire system. For
the Utah teapot, the shell was fitted only to the
rounded belly of the teapot. The handle and
spout were ignored.3

III. Results

After building up the model, the relative sizes
of the orbits could be compared. It is important
to remember that relative sizes is all that Kepler
was interested in, as absolute measurements
weren’t possible yet. (This is still reflected in
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Figure 3: The extended Keplerian model

the use of the AU, or astronomical unit. Defin-
ing that unit as the size of the Earth’s orbit
wasn’t an act of supreme cosmological arro-
gance, it was simply using the only yardstick
available.) For each pair of neighboring plan-
ets, the percentage size of the outer orbit in
terms of the inner orbit is given, for both the
mean and aphelial diameters.1

While the fit isn’t very good by modern stan-
dards, the addition of Uranus and Neptune
doesn’t stand out as particularly terrible com-
pared to Kepler’s original results. The fit for
Uranus-Neptune, in fact, using the Utah teapot
solid, provides one of the most accurate fits of
all.2

It is clear that the d10 is a particularly poor
fit for the Saturn-Uranus pair. It can at least
be said that the result here when looking at
the aphelial ratios is still better than Kepler’s
octohedron between Mercury and Venus. This
could be seen a cherry-picking, but the au-
thor feels it is well within the spirit of Kepler’s
original work, which freely switched between
perihelial, mean and aphelial numbers as con-
venient. That said, further research is needed
to find a more appropriate Platonic solid alter-
native.

IV. Discussion

An extended Mysterium Cosmographicum model
of the solar system was never going to provide
new scientific insights, but it does have value
in exploring the mindset of the 17th century.

It can be challenging for the modern reader

to think in their terms, particularly the bias
towards using ratios and proportions instead
of absolute measurements. This was the stan-
dard until well after Kepler, largely because
the metrology simply didn’t exist yet to sup-
port absolute measurements of any quality. In
addition, geometry was still the predominant
mathematics of the era. The nature of geo-
metric proofs naturally leads one to think pri-
marily in terms of relative proportions. This
now-foreign assumption, that the answer to a
problem isn’t a number but a ratio, is one of
the more subtle impediments to understand-
ing historical scientific publications. A modern
reader can follow the proofs without too much
trouble, even though a deep familiarity with
Euclid and Appolonius is now rare. But with-
out understanding the why of the proofs, one
can quickly get lost. Building and exploring
models based on this worldview is essential to
truly understanding the foundations of mod-
ern science.

Kepler also represents a critical turning-
point in the history of science, as we moved
towards a purely mathematical understanding
of the universe and away from a syllogistic
one. Part of this change was a radical shift
in how the beauty of scientific propositions
were understood. We still rely on beauty as
an important heuristic for evaluating hypothe-
ses, of course. The preference for certain forms
of equations or for theories with few special
cases is no less of an aesthetic judgment than
trying to find the Platonic solids embodied in
the structure of the solar system. It wasn’t re-
lying on beauty that led Kepler wrong, it was
relying on the wrong kind of beauty. That was
a lesson which took at least another century
to learn, but Kepler was a critical part of the
change. While he never did fully give up on
the Mysterium Cosmographicum model, he still
spent decades processing Tycho Brahe’s obser-
vations, slowly disproving his earlier theory.
The result, Kepler’s laws of planetary motion,
was the first model of orbital motion based pri-
marily on data, not a philosophical ideal. This
was a crucial step towards Newton’s hypotheses
non fingo.
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Planet pair Real (mean) Real (aphelion) Model (mean) Model (aphelion)
Mercury-Venus 1.846 2.339 2.124 1.776
Venus-Earth 1.389 1.369 1.294 1.306
Earth-Mars 1.520 1.405 1.414 1.522
Mars-Jupiter 3.421 3.583 3.466 3.322
Jupiter-Saturn 1.835 1.823 1.922 1.935
Saturn-Uranus 2.011 2.0312 1.664 1.650
Uranus-Neptune 1.567 1.626 1.638 1.579

Table 1: Ratios of orbital sizes using real world and model data

Planet pair Difference (mean) Difference (aphelion)
Mercury-Venus 0.278 -0.563
Venus-Earth -0.095 -0.063
Earth-Mars -0.106 0.116
Mars-Jupiter 0.045 -0.261
Jupiter-Saturn 0.088 0.112
Saturn-Uranus -0.346 -0.381
Uranus-Neptune 0.070 -0.04

Table 2: Differences of real world and model ratios
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